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Abstract
The renormalization group approach is applied to the study of the short-
time critical behaviour of the d-dimensional n-component anisotropic cubic
spin systems with long-range interaction of the form pσ sps−p in momentum
space. Firstly, the system is quenched from a high temperature to the critical
temperature and then relaxes to equilibrium within the model A dynamics. The
asymptotic scaling laws and the initial slip exponents θ ′ and θ of the order
parameter and the response function, respectively, are calculated to the second
order in ε = 2σ − d . For 1 � d < 2σ and n > nc, the cubic anisotropy affects
the short-time critical behaviour.

PACS numbers: 6460H, 0570L

1. Introduction

In recent years, much attention has been paid to the short-time critical dynamics [1–7]. The
short-time phenomena arise at times just after a microscopic time scale tmic needed by the
system to remember only the macroscopic condition and to forget all specific microscopic
details. It is a critical relaxation in a regime far from the equilibrium state. The corresponding
time regime is also called critical initial slip in order to distinguish it from the uninteresting
microscopic time interval between zero and tmic. Since the pioneering analytical study of [1],
universal short-time scalings have been found in various models [4, 6, 7]. When the system is
quenched from a high temperature Ti to a heat bath at the critical temperature Tc � Ti , in the
short-time regime not only does the order parameter show a power-law increase m(t) ∼ t θ

′

with a new exponent θ ′, but also the response function has Gp(t, t
′) ∼ (t/t ′)θ for t ′ → 0. For

a short time after quenching the scaling behaviour is governed by the initial slip exponents θ

and θ ′.
The short-time dynamics has been thoroughly investigated for models with short-range

interaction (SRI). For Ising systems with SRI, the predictions obtained by renormalization
group calculation [1, 8] have been successfully checked by the short-time Monte Carlo
simulation [4, 9]. In recent years there has been increasing interest in the investigation of
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the critical properties of systems with long-range interaction (LRI) decaying at large distances
r by a power law as r−d−ρ , with d the spatial dimension and ρ the parameter controlling the
range of the interaction [10–13]. Their results agree with the well known fact that the critical
equilibrium properties are modified by the presence of LRI [14–23]. Recently, how the short-
time critical behaviour depends upon the interaction range, has been discussed in the kinetic
spherical model [6] and the Ginzburg–Landau model [7]. Experimentally, systems with LRI
could be found in ionic solutions where the Coulomb interaction is partially screened [24, 25].
The LRI is important in some low-dimensional systems such as the conjugated polymers
[26, 27].

In this paper, we study the short-time critical behaviour of anisotropic cubic systems with
long-range exchange interaction. These systems are more realistic in solid state materials. In
equilibrium at temperature T the Hamiltonian describing these systems is given by

H [s] ≡
∫

ddx

{
a

2
(�s)2 +

b

2
(�σ/2s)2 +

τ

2
s2 +

gi

4!
(s2)2 +

ga

4!

n∑
α=1

(sα)4

}
(1)

where s = (sα) are n-component order parameter fields, and s2 = ∑n
α=1 s

αsα; τ is
proportional to the reduced temperature T/Tc − 1; gi and ga are the coupling constants for
the isotropy and the anisotropy, respectively. The SRI model corresponds to a = 1 and b = 0
for ρ � 2, whereas for the pure LRI model σ = ρ < 2, a = 0 and b = 1. The cubic ga-
term in equation (1) suggests that the spin interaction reacts to the lattice structure (crystalline
anisotropy) in cubic crystals.

Since the case 0 < σ < d/2 is covered by a mean-field-theoretic description, and since
for σ > 2 and d > 2 the model (1) belongs to the same universality class as the SRI model,
we will restrict ourselves in the present paper to the range d/2 < σ < min(2, d).

The static and equilibrium dynamic scaling properties of anisotropic cubic models without
LRI have been the subject of a large number of studies, and are now well understood [28–
34]. The pure LRI case has also been investigated in [39]. The cubic ga-term appears in
the Hamiltonian of the systems, as single-ion interactions, which is important at structure
phase transitions. These models exhibit different types of continuous and first-order phase
transitions, depending upon n, d , ga and also σ .

The dynamics to be discussed here, which is called the model A dynamics [40], is
controlled by the Langevin equation

∂t s
α(x, t) = −λ

δH [s]

δsα(x, t)
+ ξα(x, t)

where λ is the kinetic coefficient. The random forces ξ = (ξα) are assumed to be Gaussian
distributed

〈ξα(x, t)〉 = 0 〈ξα(x, t)ξβ(x ′, t ′)〉 = 2λδαβδ(x − x ′)δ(t − t ′).

As mentioned above, the initial non-equilibrium state is macroscopically prepared at some
very high temperature Ti � Tc. The initial state s0(x) = s(x, 0) with short-range correlations
corresponds to a Gaussian distribution P [s0] ∝ exp(−Hi[s0]) where

Hi[s0] ≡
∫

ddx
τ0

2
[s0(x) − m0(x)]

2

with τ0 being proportional toTi/Tc−1 andm0(x) the (spatially varying) initial order parameter.
By a naive dimensional analysis, τ0 ∼ µσ (where µ is a renormalization momentum scale),
the physically interesting fixed point is τ ∗

0 = +∞, which corresponds to a sharply initial
non-equilibrium state with initial order m0 and zero correlation length.
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Introducing a Martin–Siggia–Rose response field s̃(x, t) [41, 42], the generating functional
for all non-equilibrium connected correlation and response functions is given by

W [h, h̃] = ln
∫

D(is̃, s) exp

{
−L[s̃, s] − Hi[s0] +

∫ ∞

0
dt

∫
ddx (hs + h̃s̃)

}
(2)

where

L[s̃, s] ≡
∫ ∞

0
dt

∫
ddx

n∑
α=1

{
s̃α

[
∂t + λ

(
τ − a �2 +b(−�2)σ/2

)

+
λgi

6
s2 +

λga

6
(sα)2

]
sα − λ(s̃α)2

}
. (3)

Here we have used a pre-point discretization with respect to time so that the step function
'(t = 0) = 0. Then the contribution (proportional to '(0)) to L[s̃, s] arising from the
functional determinant det [δξ(x, t)/δs(x, t)] vanishes [43].

The scaling regime of the LRI model is valid only for σ < σs ≡ 2 − ηsr , where ηsr is
the Fisher exponent at the SRI fixed point [18]; whereas for σ > σs the scaling behaviour is
described by the SRI model. At the borderline value σ = σs the two descriptions yield equal
values for the critical exponents [18, 20, 21]. Since the short-range exchange interaction is
irrelevant for d/2 < σ < σs , one can consider only the pure LRI.

The added cubic term, i.e. the ga-term in equation (1), breaks explicitly the O(n) invariance
of the model, but preserves the cubic symmetry. The model described by the Hamiltonian (1)
has four fixed points corresponding to the case of SRI or LRI: the Gaussian one, the Ising one,
the Heisenberg one and the cubic one [31, 39]. The Gaussian fixed point is always unstable,
and so is the Ising fixed point. The stability properties of the Heisenberg and the cubic fixed
points depend on n, d and σ . For n < nc, the Heisenberg fixed point is stable and the cubic one
is unstable. The cubic term in the Hamiltonian represents only a correction to scaling near the
Heisenberg fixed point. While for n > nc, the cubic anisotropy is relevant, and the Heisenberg
fixed point becomes the unstable one. That is because the anisotropic cubic interaction grows
and the behaviour of the cubic interaction dominates over the Heisenberg behaviour. At n = nc

the two fixed points coincide, a crossover from the Heisenberg behaviour to the cubic behaviour
takes place. For the SRI case, field-theoretic studies predict that the marginal value nc holds
2.8 < nc � 3 [34–37], while Monte Carlo simulations suggest nc ≈ 3 by use of finite-size
scaling techniques [38].

In the present paper, we are interested in the scaling affected by both LRI and the cubic
anisotropy in the regime σ < σs . Through dimensional analysis, the upper critical dimension
of the LRI model is dc = 2σ . We apply the ε-expansion theory to the LRI model in this regime
with ε ≡ 2σ − d . The critical initial order increase appears in the LRI model for 1 � d < dc.
The scaling behaviour of the critical initial slip is governed by the exponents θ and θ ′. They
are computed as functions of d , σ and n at the LRI cubic fixed point. Our results show that
the anisotropic cubic interaction affects the short-time critical behaviours for 1 � d < dc and
n > nc.

The paper is organized as follows. In section 2, the LRI model with σ < σs is studied
by the ε expansion method. The scaling behaviour of the order parameter, correlation and
response functions, as well as the corresponding critical initial slip exponents, are obtained.
Section 3 contains conclusions and discussions.
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2. The scalings and exponents

Since the SRI is irrelevant for σ < σs , in this section we take a = 0 and b = 1 in (3). For
gi = ga = 0, the generating functional (2) becomes the Gaussian model which serves as the
free part of a perturbation series. One must take into account the initial condition, by imposing
the following boundary conditions:

s̃(x,∞) = 0 s0(x) = m0(x) + τ0
−1s̃(x, 0).

The free response function Gp(t, t
′) = 〈sp(t)s̃−p(t

′)〉G and the free correlation function
Cp(t, t

′) = 〈sp(t)s−p(t
′)〉G are, respectively,

Gp(t, t
′) = '(t − t ′) exp[−λ(pσ + τ)(t − t ′)]

Cp(t, t
′) = C(e)

p (t − t ′) + C(i)
p (t, t ′)

with the equilibrium part C(e)
p (t − t ′) and the initial (non-equilibrium) part C(i)

p (t, t ′) defined
by

C(e)
p (t − t ′) ≡ 1

τ + pσ
exp[−λ(pσ + τ)|t − t ′|]

C(i)
p (t, t ′) ≡

(
τ−1

0 − 1

τ + pσ

)
exp[−λ(pσ + τ)(t + t ′)].

One now sets a perturbation expansion ordered by the number of loops in the Feynman
diagrams. It is convenient to consider the Dirichlet boundary conditions τ0 = +∞ and
m0(x) = 0. The general case is recovered by treating the parameters τ0

−1 and m0(x)

as additional perturbations. The model (2) with Dirichlet boundary conditions must be
renormalized. For this purpose note that the free correlation function simplifies to

C(D)
p (t, t ′) ≡ 1

τ + pσ

{
exp[−λ(pσ + τ)|t − t ′|] − exp[−λ(pσ + τ)(t + t ′)]

}
.

Through dimensional analysis, the critical dimension dc = 2σ , and hence it is convenient
to make an expansion in ε = 2σ − d. A perturbation calculation of Green functions
leads to integrals which are ultraviolet-divergent at dc. We will apply the dimensional
regularization with minimal subtraction scheme [44] to render these integrals finite, and
introduce renormalized quantities through multiplicative factors

sb = Z1/2
s s s̃b = Z

1/2
s̃

s̃ λb = (Zs/Zs̃)
1/2λ

gib = K−1
d µεZ−2

s Zui
ui gab = K−1

d µεZ−2
s Zua

ua

τb = Z−1
s Zτ τ τ0b = (Zs̃/Zs)

1/2τ0 s̃0b = (Zs̃Z0)
1/2s̃0

(4)

where the subscript b denotes the bare quantity and Kd ≡ 21−dπ−d/2[0(d/2)]−1.
Since the equilibrium part of the Dirichlet correlator C(e)

p (t − t ′) gives the same ultraviolet
divergences as those of the equilibrium theory at t = t ′, the renormalization constants Zs , Zs̃ ,
Zτ , Zui

and Zua
can cure these divergences. On the other hand, the non-equilibrium initial

conditions break the translational invariant with respect to time. That is to say that there are
divergences arising from the initial part C(i)

p (t, t ′) at t + t ′ = 0, hence one encounters a new
renormalization constant Z0. A naive power counting and the Ward identities:

s0(x) = 0 ṡ0(x) = 2λs̃0(x)

reveal that this new renormalization is required only in a two-point response function
〈s(x, t)s̃(x ′, 0)〉.
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At a fixed value of σ , a two-loop calculation gives the following renormalization constants
which render the equilibrium Green functions finite:

Zs = 1 (5)

Zs̃ = 1 − n + 2

6ε
Bσu

2
i − 1

ε
Bσuiua − 1

2ε
Bσu

2
a (6)

Zui
= 1 +

n + 8

6ε
ui +

1

ε
ua +

[
(n + 8)2

36ε2
− 5n + 22

36ε
Dσ

]
u2
i

+

(
n + 12

4ε2
− 1

ε
Dσ

)
uiua +

(
5

4ε2
− 1

4ε
Dσ

)
u2
a (7)

Zua
= 1 +

2

ε
ui +

3

2ε
ua +

(
n + 20

6ε2
− n + 14

12ε
Dσ

)
u2
i

+

(
11

2ε2
− 2

ε
Dσ

)
uiua +

(
9

4ε2
− 3

4ε
Dσ

)
u2
a (8)

Zτ = 1 +
n + 2

6ε
ui +

1

2ε
ua +

[
(n + 2)(n + 5)

36ε2
− n + 2

24ε
Dσ

]
u2
i

+

(
n + 5

6ε2
− 1

4ε
Dσ

)
uiua +

(
1

2ε2
− 1

8ε
Dσ

)
u2
a . (9)

Here we have introduced

Bσ ≡ K−1
2σ

∫
d2σ x

(2π)2σ
[1 + xσ + (e + x)σ ]−2x−σ

with e a unit vector in the 2σ -dimensional space, and

Dσ ≡ ψ(1) − 2ψ(σ/2) + ψ(σ)

with ψ(x) being the logarithmic derivative of the gamma function. For the particular case
σ = 2, one has B2 = 1

2 ln 4
3 , and D2 = 1.

In order to determine the renormalization constant Z0, we calculate the two-point function
〈s(−q, t)s̃(q, t ′)〉, with one leg attached to the initial surface t ′ = 0

〈s(−q, t)s̃(q, 0)〉 =
∫ ∞

0
dt ′ 〈s(−q, t)s̃(q, t ′)〉(e)0(i)

10 (q, t
′)

by using the graphs of figure 1. The factor 〈s(−q, t)s̃(q, t ′)〉(e) denotes the contribution to
the two-point function coming only from the equilibrium part C(e)

p (t, t ′), whereas the residual

factor 0
(i)
10 (q, t

′) is the sum of the amplitudes with at least one initial part C(i)
p (t, t ′). In

these diagrams C(D)
p (t, t ′) and Gp(t, t

′) are represented by full lines without and with arrows,
respectively. The small circle means that one time argument is set equal to zero. Since the
diagrams containing the vertices gs or gc are similar, the vertices are not shown in figure 1
explicitly.

We write the singular part of 0(i)
10 at the critical point τ = 0 in the form

0
(i)
10 (q = 0, t) = I1 − λ

(
n + 2

6
gi +

1

2
ga

)
I2

+ λ2

[(
n + 2

6

)2

g2
i +

n + 2

6
giga +

1

4
g2
a

]
(2I3 + I5)

+ λ2

(
n + 2

6
g2
i + giga +

1

2
g2
a

)
I4 (10)
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Figure 1. Diagrams contributing to 0
(i)
10 (q, t) up to two-loops.

where Ij with j = 1, 2, 3, 4, 5 is the contribution of the j th diagram in figure 1. These
contributions up to two-loop order are given by

I1 = δ(t)

I2 =
∫

ddp

(2π)d
C(i)

p (t, t) = − 1

σ
Kd0

(
1 − ε

σ

)
(2λt)−1+ε/σ

I3 =
∫ t

0
dt ′

∫
ddp

(2π)d
C(i)

p (t, t)

∫
ddp′

(2π)d
Gp′(t, t ′)C(D)

p′ (t, t ′)

= −K2
d

02(1 − ε/σ)

σλε

[
02(1 + ε/σ)

0(1 + 2ε/σ)
− 1

2

]
(2λt)−1+2ε/σ

I4 =
∫ t

0
dt ′

∫
ddp

(2π)d

ddp′

(2π)d
Gp+p′(t, t ′)

(
2C(i)

p (t, t ′)C(e)
p′ (t, t

′) + C(i)
p (t, t ′)C(i)

p′ (t, t
′)
)

= 1

σλ
K2

d0(1 − 2ε

σ
)

(
2

σ
ln 2 − 1

2
Dσ − 1

ε
+ O(ε)

)
(2λt)−1+2ε/σ

I5 =
∫ t

0
dt ′

∫
ddp

(2π)d

ddp′

(2π)d
C(i)

p (t, t)C
(i)
p′ (t

′, t ′) = 1

2σλε
K2

d0
2

(
1 − ε

σ

)
(2λt)−1+2ε/σ .

We renormalize now according to (4)–(8) the (bare) quantities entering this expression (10).
The residual singularity is then removed by requiring [1]

Z
−1/2
0

∫ ∞

0
dt e−iωt0

(i)
10 (q = 0, t)b = finite for ε → 0.

Here the subscript b denotes the expression of 0(i)
10 obtained above in which only bare quantities

appear. From this condition we compute Z0 as

Z0 = 1 +
n + 2

6ε
ui +

1

2ε
ua +

n + 2

12ε2

[
n + 5

3
+

(
2

σ
ln 2 − 1

2
Dσ

)
ε

]
u2
i

+
1

2ε2

[
n + 5

3
+

(
2

σ
ln 2 − 1

2
Dσ

)
ε

]
uiua

+
1

4ε2

[
2 +

(
2

σ
ln 2 − 1

2
Dσ

)
ε

]
u2
a. (11)
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Introducing the renormalized non-equilibrium connected Green function of N s-fields, Ñ
s̃-fields, and M s̃0-fields, i.e. GM

NÑ
= 〈sN s̃Ñ s̃M0 〉, then the renormalization group equation is

expressed as

[µ∂µ + ζλ∂λ + κτ∂τ + βi∂ui
+ βa∂ua

+ ζ τ−1
0 ∂τ−1

0
+ 1

2 (Nγ + Ñ γ̃ + M(γ̃ + γ0))]G
M

NÑ
= 0.

(12)

The Wilson functions entering the renormalization group equations are defined by

γ ≡ µ∂µ ln Zs |0 βi ≡ µ∂µui |0 βa ≡ µ∂µua|0 γ̃ ≡ µ∂µ ln Zs̃ |0
κ ≡ µ∂µ ln τ |0 ζ ≡ µ∂µ ln λ|0 = 1

2 (γ̃ − γ ) γ0 ≡ µ∂µ ln Z0|0
and are computed perturbatively from equations (5)–(9). The symbol |0 means that µ-
derivatives are calculated at fixed bare parameters. At the two-loop level, the Wilson functions,
which agree with those of the equilibrium critical dynamics, are given by

βi = −εui +
n + 8

6
u2
i + uaui − 5n + 22

18
Dσu

3
i − 2Dσuau

2
i − 1

2
Dσu

2
aui

βa = −εua + 2uaui +
3

2
u2
a − n + 14

6
Dσuau

2
i − 4Dσu

2
aui − 3

2
Dσu

3
i

γs = 0

γs̃ = n + 2

3
Bσu

2
i + 2Bσuaui + Bσu

2
a

ζ = n + 2

6
Bσu

2
i + Bσuaui +

1

2
Bσu

2
a

κ = n + 2

6
ui +

1

2
ua − n + 2

12
Dσu

2
i − Dσ

2
uaui − Dσ

4
u2
a.

The new Wilson function γ0, which is related to the initial order parameter, is given by

γ0 = −n + 2

6
ui − 1

2
ua −

(
n + 2

6
u2
i + uaui +

1

2
u2
a

) (
2

σ
ln 2 − 1

2
Dσ

)
. (13)

By solving algebraically the equations βi(ui, ua) = 0 and βi(ui, ua) = 0, one finds four fixed
points: Gaussian, Ising, Heisenberg and cubic. Their stability has been discussed in [39]. How
the former three fixed points govern the short-time behaviour has also been investigated in the
isotropic systems [7]. Here we are only interested in the infrared LRI cubic fixed point

u∗
i = 2ε

n

[
1 +

2(n − 1)(6 − n)

3n2
Dσε

]
+ O(ε3)

u∗
a = 2ε

3n

[
n − 4 +

2(n − 1)(n2 + 6n − 24)

3n2
Dσε

]
+ O(ε3)

(14)

and subsequently the values of the Wilson functions at this point. The eigenvalues λi and λa

corresponding to u∗
i and u∗

a , respectively, are

λi = ε − 2(n − 1)(n2 + 12)

3n2(n + 2)
Dσ ε

2 + O(ε3)

λa = (n − 4)ε

3n

[
1 − 2(n − 1)(n3 − 4n2 − 36n + 48)

3n2(n − 4)(n + 2)
Dσ ε

]
+ O(ε3).

(15)
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The LRI cubic fixed point is stable for λi > 0 and λa > 0. From λi(nc) = 0 or u∗
a(nc) = 0,

one finds

nc = 4 − 2Dσε + O(ε2) (16)

where a crossover phenomenon between the LRI Heisenberg fixed point and the LRI cubic
one takes place. For n > nc the critical scaling behaviour is governed by the LRI cubic fixed
point. For fixed d (or σ ), nc decreases as σ increases (or d decreases).

Using dimensional analysis and the solution of equation (12), we find that the connected
Green function at the fixed point w∗ = (u∗

i , u
∗
a) displays the scaling behaviour:

GM

NÑ
({x, t}, τ, τ−1

0 , λ, u∗
i , u

∗
a, µ) = l

1
2 (d−σ+ηs)N+ 1

2 (d+σ+ηs̃ )Ñ+ 1
2 (d+σ+ηs̃+η0)M

× GM

NÑ

({
lx, lσ+ζ(u∗)t

}
, τ l−σ+κ(u∗), τ−1

0 lσ+ζ(u∗), λ, u∗
i , u

∗
a, µ

)
(17)

where ηs ≡ γ (w∗), ηs̃ ≡ γ̃ (w∗), and η0 ≡ γ0(w
∗) are the anomalous dimensions of s, s̃ and

s̃0,
In order to identify the critical exponents one can compare the standard scaling form of

the two-point correlation function

G0
20(x − x ′, t, t ′, τ ) = |x − x ′|−(d−2+η)f

( |x − x ′|
ξ

,
|x − x ′|

t1/z
,
|x − x ′|
t ′1/z

)

to equation (15) in which we have set N = 2, Ñ = M = 0 and lx = 1. Here ξ ≡ τ−ν .
In this way we find the long-time critical exponents of the anisotropic cubic systems. They

can be calculated by the relations η ≡ 2 − σ + ηs , z ≡ σ + ζ(w∗), and 1/ν ≡ σ − κ(w∗). To
second order in ε they are, respectively,

η = 2 − σ (18)

ν = 1

σ
+

2(n − 1)

3σ 2n

{
1 +

[
2(n − 1)

3σn
− n2 − 18n + 24

3n2
Dσ

]
ε

}
ε (19)

z = σ +
2(n − 1)(n + 2)

9n2
Bσε

2 (20)

which agree with the results of [39].
The short-time scaling behaviour of correlation and response functions can be obtained

by a short-time expansion of the fields s(x, t) and s̃(x, t), as done in [1]. By means of Green
functions (15), one will find for t → 0

s(x, t) = t1+η0/(2z)φ(t/ξ z)s̃0(x) + · · · (21)

s̃(x, t) = tη0/(2z)φ̃(t/ξ z)s̃0(x) + · · · (22)

where φ(0) and φ̃(0) are finite quantities. Combining them with equation (15), one can derive
the following behaviour of the full response and correlation functions for t > 0 but t ′ → 0:

G(p, t, t ′) = p−2+η+z

(
t

t ′

)θ

fG

(
pξ, pzt

)
(23)

C(p, t, t ′) = p−2+η

(
t

t ′

)θ−1

fC

(
pξ, pzt

)
(24)

with the scaling function fG and fC . Here we defined the initial slip exponent θ ≡ −η0/(2z)
and computed it to second order in ε

θ = ε(n − 1)

3σn

{
1 −

[
n2 − 18n + 24

6n2
Dσ − 2(n + 2)

3σn
ln 2

]
ε

}
. (25)
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Let us now discuss the scaling form of the order parameter which relaxes from a non-zero
initial value m0 to zero. In this case, m0(x) is considered as a time-independent source coupled
to s̃0(x) [1]. Taking a homogeneous source m0(x) = m0, but keeping still τ ∗

0 = +∞, the power
law of the time-dependent order parameter m(t) ≡ 〈s(x, t)〉|h̃=h=0 is given by

m(t) = m0t
θ ′
fm

(
m0t

θ ′+(d−2+η)/2z, τ t1/νz
)

(26)

where the scaling function fm(0, 0) is finite, and fm(x, 0) ∼ 1/x for x → ∞. In equation (26),
the exponent θ ′ is defined by θ ′ ≡ −(ηs + ηs̃ + η0)/(2z). To second order in ε it has the value

θ ′ = ε(n − 1)

3σn

{
1 −

[
n2 − 18n + 24

6n2
Dσ − 2(n + 2)

3σn
(ln 2 − σBσ )

]
ε

}
. (27)

From equations (25) and (27), it is easily verified that for n = 1 and 2, the short-time exponents
θ and θ ′ are the Gaussian-like and Ising-like, respectively. That is because the cubic fixed point
is degenerate with the Gaussian fixed point for n = 1 and with the Ising fixed point for n = 2
[28, 39]. To second order in ε, they meet the corresponding Heisenberg exponents [7] at
n = nc.

3. Discussions and conclusions

It is believed that the singularity of the temporal correlation is essential to the short-time
scaling and the scaling can emerge in the early stage of the evolution even though all spatial
correlations are still short-ranged.

The system with LRI is now rapidly quenched to a temperature T � Tc. The order
parameter will undergo a relaxation process displaying an initial increase. As long as the
correlations are short-ranged and the spatial dimension d is smaller than the critical dimension
dc = 2σ , the order parameter follows a mean-field ordering process because the mean-field
critical temperature T (mf)

c is larger than the actual critical temperature Tc. This ordering causes
an amplification of the initial order parameter. For d > dc mean-field theory applies and there
is no critical increase.

When the system with LRI has a cubic anisotropy, one has to consider the influence of the
cubic term in the Hamiltonian on the critical behaviour. The importance of the cubic term is
due to the fact that in a real crystal the crystalline structure gives rise to anisotropies which are
mainly of cubic type [38]. Thus real crystals are better described by mixed actions in which
both the isotropic and the cubic term are presented. Two-loop calculation shows that at

n = nc = 4 − 2Dσε

the scaling behaviours governed by the LRI Heisenberg fixed point crosses over to those by the
LRI cubic one. For n < nc, the Heisenberg fixed point is stable and the cubic one is unstable.
The cubic term in the Hamiltonian represents only a correction to scaling near the Heisenberg
fixed point, which is similar to the SRI case [31]. While for n > nc, the cubic anisotropy
is relevant, and the Heisenberg fixed point becomes the unstable one. That is because the
anisotropic cubic interaction grows and the behaviour of the cubic interaction dominates over
the Heisenberg behaviour. Since the cubic fixed point is degenerate with the Gaussian fixed
point for n = 1 and with the Ising fixed point for n = 2, the cubic behaviour is reduced as are
those of the Gaussian and Ising systems, respectively.

In the following we focus on the pole the cubic anisotropy plays in the short-time scaling
behaviour. Let us first note that both the response and the correlation functions measure the
fluctuations of the order parameter fields. For the short time after quench the cubic scaling
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behaviours are governed by the initial slip exponents θ and θ ′. Since the initial slip exponents
θ and θ ′ are positive, one expects, according to equations (23)–(27), an initial increase of the
fluctuations. The stronger the fluctuations, the greater the values of θ and θ ′. Of course, the
increase depends upon σ , d and n. Since fluctuations are reduced as the dimension becomes
larger or interactions of longer range (σ smaller), θ and θ ′ decrease when d increases or σ

decreases. But the relationship between n and the initial increase seems delicate. For fixed
σ and d, more internal degrees of freedom (larger n) help the fluctuations increase. But for
large σ , the fluctuations decrease when n exceeds some threshold value, which is probably
because the interactions among a huge number of internal degrees strengthen the mean fields,
but suppress the fluctuations.

Our results can also be compared with those of the Heisenberg systems with LRI [7]. The
infrared Heisenberg fixed point to order ε2 is located at

u∗
H = 6ε

n + 8

[
1 +

2(5n + 22)

(n + 8)2
Dσε

]
+ O(ε3). (28)

Here the subscript H means the Heisenberg systems. The critical initial slip exponent θ ′ in
this system can also be computed to second order in ε [7]:

θ ′
H = ε(n + 2)

2σ(n + 8)

{
1 +

[
7n + 20

(n + 8)2
Dσ +

12(ln 2 − σBσ )

σ (n + 8)

]
ε

}
. (29)

In cubic systems the behaviours that the initial exponents are dependent on d, σ and n, are
similar to those in the Heisenberg systems. As mentioned before, for n > nc, since the
cubic behaviour overcomes the Heisenberg behaviour, one will expect that the cubic exponent
θ ′ > θ ′

H . But, in fact, it is not so simple. Due to the competition between the isotropic
interaction and the anisotropic cubic interaction, the different poles in the fluctuations they
play (because the initial increase of the fluctuations are decided by the anisotropic interaction
ga and the isotropic interactions gi), there exist three distinct regimes in the cubic systems for
fixed d and σ . For 1 � n < nc < 4, the isotropic interaction helps to increase the fluctuations,
while the anisotropic interaction grows, but it suppresses the fluctuations (see the ε-term in
the second equation u∗

a in equation (14)). Hence θ ′ < θ ′
H in this regime. At n = nc, since

to order ε2 the affect of the anisotropy disappears, all the fluctuations are equal in both the
cubic systems and the Heisenberg systems, so θ ′ = θ ′

H . When n > nc, the behaviour of the
cubic interaction dominates over the Heisenberg behaviour so that θ ′ > θ ′

H . Due to the effect
of the mean fields, the fluctuations decrease when n exceeds some threshold value in both
systems. In addition, the Dσ -term in equation (27) changes to become negative for some large
n in the cubic systems. Hence θ ′ < θ ′

H for large n. One may easily check this conclusion
by computing θ ′ and θ ′

H for n = 1, 2, 3, nc and ∞ in three dimensions. This conclusion also
holds for the initial slip exponent θ .

At σ = σs ≡ 2 − ηsr (where ηsr = [(n − 1)(n + 2)/54n2]ε′2 + O(ε′3) and ε′ ≡ 4 − d

[31]) and fixed d , our results recover the SRI results with the cubic anisotropy [45]. That is
to say that at σ = σs the LRI scaling behaviours cross over to the SRI ones. For σ > σs , the
scaling regime is governed by the SRI fixed points. The LRI scaling regime is only valid for
σ < σs .

We summarize now our results. We studied the short-time critical behaviour of the
anisotropic cubic systems with LRI in the ε-expansion up to two-loop order. We observed
an initial critical increase for dimensions smaller than dc and for the interaction range
d/2 < σ < d . We obtained the universal critical exponents θ and θ ′ of the initial slip as
functions of d , n, and the interaction range parameter σ . Our results show that the anisotropic
cubic interaction affects the short-time critical dynamics.
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Finally, we would like to mention that a check of our results by Monte Carlo simulations
will soon be available [46]. They are starting Monte Carlo simulation of 1D LRI Ising model,
and the preliminary results are encouraging. One of their results, which is obtained from the
simulation of lattice size L = 4000 and near the critical point, shows that θ ′ = 0.164 77 for
m0 = 0.01. This value agrees with our theoretical value θ ′ = 0.167 34 for the 1D anisotropic
cubic XY system (n = 2) and σ = 0.7. The experiments which try to test our results may be
carried out in physical systems such as LaAlO3, SrTiO3 and KMnF3 (where structural phase
transitions have been proposed to be in the universality class of the cubic anisotropic model
with d = n = 3 [33, 47]), or ionic solutions and the conjugated polymers with LRI.
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